A Tseng-type algorithm for approximating zeros of monotone inclusion and J-fixed-point problems with applications
نویسندگان
چکیده
Abstract In this paper, a Halpern–Tseng-type algorithm for approximating zeros of the sum two monotone operators whose are J -fixed points relatively -nonexpansive mappings is introduced and studied. A strong convergence theorem established in Banach spaces that uniformly smooth 2-uniformly convex. Furthermore, applications to convex minimization image-restoration problems presented. addition, proposed used solving some classical image-recovery numerical example space presented support main theorem. Finally, performance compared with existing algorithms literature.
منابع مشابه
A Class of nonlinear $(A,eta)$-monotone operator inclusion problems with iterative algorithm and fixed point theory
A new class of nonlinear set-valued variationalinclusions involving $(A,eta)$-monotone mappings in a Banachspace setting is introduced, and then based on the generalizedresolvent operator technique associated with$(A,eta)$-monotonicity, the existence and approximationsolvability of solutions using an iterative algorithm and fixedpint theory is investigated.
متن کاملa class of nonlinear $(a,eta)$-monotone operator inclusion problems with iterative algorithm and fixed point theory
a new class of nonlinear set-valued variationalinclusions involving $(a,eta)$-monotone mappings in a banachspace setting is introduced, and then based on the generalizedresolvent operator technique associated with$(a,eta)$-monotonicity, the existence and approximationsolvability of solutions using an iterative algorithm and fixedpint theory is investigated.
متن کاملAn Approximate Proximal Point Algorithm for Maximal Monotone Inclusion Problems
This paper presents and analyzes a strongly convergent approximate proximal point algorithm for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method combines the proximal subproblem with a more general correction step which takes advantage of more information on the existing iterations. As applications, convex programming problems and generalized variational inequa...
متن کاملIterative common solutions for monotone inclusion problems, fixed point problems and equilibrium problems
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let α > 0, and let A be an α-inverse strongly-monotone mapping of C into H. Let T be a generalized hybrid mapping of C into H. Let B andW be maximal monotone operators on H such that the domains of B andW are included in C. Let 0 < k < 1, and let g be a k-contraction of H into itself. Let V be a γ -strongly monoto...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Algorithms for Sciences and Engineering
سال: 2023
ISSN: ['2730-5422']
DOI: https://doi.org/10.1186/s13663-023-00741-2